深度科普:什么是人工智能

我们正处在一个日新月异、飞速变革的时代,层出不穷的新技术,无时无刻不刷新着我们的世界观,这其中信息技术发挥了巨大的作用,比如计算机、互联网、智能家居等技术的普及极大地方便了人们的生活,这在几十年前根本是无法想象的。
近些年“人工智能”热潮的兴起,这给我们的生活带来了巨大的改变。无人驾驶、机器翻译、语音识别、图像识别,这些都是“人工智能”的产物。比如 AlphaGo Zero 一台没有任何围棋知识的智能机器,经过几天的自我博弈成为了世界第一的围棋大师;“风格多变 app”能自动将用户的上传的照片转变为具有艺术风格的照片;“机器翻译”可以在很短的时间内将一种语言翻译成另外一种语言,以及 AI 智能医生能够将病情诊断变得更加精准。

在过去的几年内,“人工智能”技术不仅在学术上取得了巨大的突破,也开始走向寻常百姓家,比如小度、天猫精灵等语音控制机器。

人工智能发展简史

“人工智能”Artificial Intelligence),英文缩写为 AI 从字面意思来看,它指的是让机器获得像人一样的智慧。电影《黑客帝国》中的大 BOSS 就是一个名叫“矩阵”的智能机器。但“人工智能”真的会像科幻电影一样,在不久的将来控制世界与人类吗?其实这种担心就目前而言大可不必,这种可能只能存在于影片艺术表现形式中。不过你要问“人工智能”会取代人类吗?这一点倒值得你我深思。

1) 第一次兴起

“人工智能”并非一个新兴概念,早在 1950 年 艾伦·图灵 就提出了图灵测试机的构想。随后,在 Dartmouth (达特茅斯)学会上,“人工智能”的概念被首次提出。在这之后人工智能经历了一段崎岖的发展历程。

从 20 世纪 50 年代中期至 70 年代中期,许多学者、科学家投身于人工智能领域的研究。但是由于硬件设施、计算机技术发展还不成熟,远不能满足人工智能对计算机算力、数据获取与存储的要求,从而导致人工智能迎来了第一个低谷期。在这一时期许多具有指导意义的著作相继发表,这为后续的再度发展打下了理论基础,。

寒冬虽然来临,不过有着坚韧不拔精神的学者们仍未放弃,直至于 20 世纪 80 年代,卡内基梅隆大学终于设计出了第一套专家系统——XCON,该专家系统具有一套强大的知识库和推算能力,可以模拟人类专家来解决特定领域问题。随后日本、美国相继成立专家团队希望用 10 年的时间研究出智能计算机,由此带来“人工智能”的第二次发展热潮。

2) 第二次发展

在第二个发展热潮中,有一个最引人注目的成果,那就是“反向传播算法”得到了成功应用,它为神经网络的发展奠定了基础。1986 年第一届深度学习神经信息处理系统研讨会(简称 NIPS)在美国举办,该会议吸引了很多不同领域的研究人员。但是由于技术应用实现困难,加之计算机算力、数据等不足,从而导致了“人工智能”的第二个低谷期。

3) 第三次崛起

时间终于来到了 21 世纪,由于互联网和云计算的兴起,计算机硬件、性能也得到了大幅度提升,因此“人工智能”在经历了数十年的低谷期后终于迎来了第三次发展热潮。

2005 年美国国防部高级研究计划局(简称 DARPA)举办的自动驾驶挑战赛中,一辆由斯坦福大学研发的无人驾驶汽车 “Stanley” 赢得胜利,这是“无人驾驶技术”第一次出现在世人面前。截止目前为止,许多高端科技已经相继问世,比如谷歌机器翻译、AI 诊断医生、语音识别、图像识别、以及人工智能协同“AlphaGO”等等。

互联网和云计算之所以让“人工智能”再次复兴,其原因主要有两点:一是互联网能够提供海量的数据;二是云计算提供了超强的计算能力。科研工作者们坚信,在经历这些坎坷后人工智能定会在当下以及未来迎来更加蓬勃的发展。

机器学习&深度学习

人工智能(Artificial Intelligence)是计算机科学技术的一个分支,指的是通过机器和计算机来模拟人类智力活动的过程。人工智能自 1950 年诞生以来,理论和技术日益成熟,应用领域也不断扩大,涉足了领域包括机器人、语言识别、图像识别、自然语言处理等。人工智能并不是人的智能,而是让机器像人一样思考,甚至于超过人类。

如今人工智能已经走进了千家万户,对于普通大众来说,它已经是一个耳熟能详的名字。但还有两个词语您可能没有听说过,它就是机器学习和深度学习。

学习形式分类

机器学习是人工智能的主要表现形式,其学习形式主要分为:有监督学习、无监督学习、半监督学习等,如果你之前没有接触过机器学习,那么对于“监督”一词会不明就里,其实你可以把这个词理解为习题的“参考答案”,专业术语叫做“标记”。比如有监督学习就是有参考答案的学习,而无监就是无参考答案。

1) 有监督学习

有监督学习(supervised learning),需要你事先需要准备好要输入数据(训练样本)与真实的输出结果(参考答案),然后通过计算机的学习得到一个预测模型,再用已知的模型去预测未知的样本,这种方法被称为有监督学习。这也是是最常见的机器学习方法。简单来说,就像你已经知道了试卷的标准答案,然后再去考试,相比没有答案再去考试准确率会更高,也更容易。

2) 无监督学习

理解了有监督学习,那么无监督学习理解起来也变得容易。所谓无监督学习(unsupervised learning)就是在没有“参考答案”的前提下,计算机仅根据样本的特征或相关性,就能实现从样本数据中训练出相应的预测模型。

预测结果分类

根据预测结果的类型,我们可以对上述学习形式做具体的问题划分,这样就可以具体到实际的应用场景中,比如有监督学习可以划分为:回归问题和分类问题。如果预测结果是离散的,通常为分类问题,而为连续的,则是回归问题。

1) 回归&分类

连续和离散是统计学中的一种概念,全称为“连续变量”和“离散变量”。比如身高,从 1.2m 到 1.78m 这个长高的过程就是连续的,身高只随着年龄的变化一点点的长高。那么什么是“离散变量”呢?比如超市每天的销售额,这类数据就是离散的,因为数据不是固定,可能多也可能少。关于什么是“回归”和“分类”在后续内容中会逐步讲解。

2) 聚类

无监督学习是一种没有“参考答案”的学习形式,它通过在样本之间的比较、计算来实现最终预测输出,比如聚类问题,那什么是“聚类”?其实可以用一个成语表述“物以类聚,人以群分”,将相似的样本聚合在一起后,然后进行分析。关于聚类也会在后续内容中逐步讲解。
在学习机器学习技术的过程中,我们会遇到很多专业术语或者生僻词汇,这些名词大多数来自于数学或者统计学领域,比如模型、数据集、样本、熵,以及假设函数、损失函数等,这些属词汇于基本的常识,但是如果你第一次接触的话,也会感觉到些许惊慌。

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

发表评论

登录后才能评论