人工智能领域很多引人注目的进展并不真实

扫码链接5000+新基建产业链上下游从业者,入群请备注“机智地+姓名+公司+岗位

新智元导读】近日,一名MIT的自由科学家Hutson在Science发文,抨击「人工智能的一些进展并不真实」,MIT研究人员对当前的一些AI论文进行了系统评估后发现,新模型和之前的经典模型结果相差并不大,论文作者宣称的效果提升大部分是旧模型的微小改动,并采用了不同的评价标准。           

人工智能似乎变得越来越聪明。每一部 iPhone 都比上一部更好地了解你的面孔、声音和习惯,各种性能的提升真的是来自算法的创新吗?           

人工智能领域很多引人注目的进展并不真实                        

Matthew Hutson           

多数算法改进缺乏创新性           

麻省理工学院(MIT)计算机科学专业的研究生戴维斯 布拉洛克(Davis Blalock)表示,有些算法改进来自微调,而不是发明者声称的核心创新,而且有些改进可能根本不存在。           

Blalock 和他的同事比较了几十种改进神经网络的方法。「我们梳理了50篇论文,但是我们仍然不知道最先进的技术到底是什么。」           

研究人员评估了81种剪枝算法,这些剪枝算法主要是裁剪一些不必要的连接以提高神经网络效率。所有人都都变着法说自己的算法是最好的, 但他们很少进行公允的有说服力的比较ーー当研究人员把这些算法放在同一标准下评估时,10年的时间,并没有什么显著的改善。           

人工智能领域很多引人注目的进展并不真实            

           

以剪枝算法为例,质疑这些论文主要原因有以下几点:           

缺乏一个完备的比较。2010年之前的算法没有加入评估,最近的更新也没有,对比较多的是VGG、ResNet这些经典架构,而最新的EfficientNet则很少。           

人工智能领域很多引人注目的进展并不真实                        

你用了ImageNet,好我用CIFAR;什么你也用CIFAR,RseNet架构?那我用CIFAR和VGG。。           

数据集和神经网络架构都不统一,得出的结论实在很难让人信服。

           

人工智能领域很多引人注目的进展并不真实                        

评价指标不一致,结果描述不完整。仅从效率和准确率无法评估出模型的对比效果。只有一篇论文使用了标准差来评估整体的趋势。           

人工智能领域很多引人注目的进展并不真实  还有一点就是大家用的数据预处理方法、超参数的调整策略,使用的框架,剪枝和微调介入的时期等都没有统一,这些都会导致结果的不同。比如同样的算法,有些PyTorch的实现就比TensorFlow的好,当然反过来也有可能。

           

人工智能领域很多引人注目的进展并不真实            

           

水论文到底在玩什么把戏?           

今年三月份在MLSys上公布的结果让 Blalock 的博士导师,麻省理工学院的计算机科学家 John Guttag 感到惊讶,「这种不平衡的比较本身就可以解释为什么停滞不前了」。这是老一套了,对吧?           

从当前主流的机器学习架构来看,机器学习算法的收益主要来自其结构、损失函数或优化策略的根本性变化。           

卡内基梅隆大学的计算机科学家 Zico Kolter 研究图像识别模型,该模型被训练后可以对黑客的「对抗性攻击」免疫。           

一种早期的对抗性训练方法投影梯度下降法(PGD) ,现在一些更复杂的方法看似超越了PGD,但是在二月份的 arXiv 论文中,Kolter 和他的同事们发现,只需要一个简单的技巧来增强PGD,所有这些方法的效果都差不多。           

            

           

论文灌水成风,但剪枝算法建议别发了

           

网友对如今AI论文灌水之风也是颇有微词,比如NIPS2018入选千篇。

           

人工智能领域很多引人注目的进展并不真实            

           

知乎网友@Xiang Wang提出,论文要么跟实际贴合提升业务,要么就是理论创新,但是很多论文两者都没有做到,纯用捏造,实在是尴尬。

           

人工智能领域很多引人注目的进展并不真实            

           

即使新方法并不比旧方法好到哪里去,每隔一段时间也会有一个新的算法实现应用上的突破, 「这几乎就像一个风险投资组合,其中一些东西并没有真正发挥作用,但一些业务却表现出色」。

           

一些工业界看起来很好的效果可能是因为该领域的爆炸性增长,论文数量超过了有经验的审稿人。评审人员时间紧任务重,只与基准进行比较,很容易得出偏见性的结论。

           

人工智能领域很多引人注目的进展并不真实            

           

今年早些时候,Blalock 的合著者,麻省理工学院的研究员 Jose Gonzalez Ortiz,发布了一款名为 ShrinkBench 的软件,该软件是基于PyTorch并且是开源的,它使得比较剪枝算法变得更加容易,以后再发这类的论文可要注意了!           

参考链接:           

https://www.zhihu.com/question/59002888)           

https://www.sciencemag.org/news/2020/05/eye-catching-advances-some-ai-fields-are-not-real)

           

https://proceedings.mlsys.org/static/paper_files/mlsys/2020/73-Paper.pdf           

免责声明:本文来自腾讯新闻客户端自媒体,

声明: 本文由入驻基智地平台的作者撰写,观点仅代表作者本人,不代表基智地立场;基智地发布此信息的目的在于传播更多信息,与本站立场无关。

发表评论

邮箱地址不会被公开。 必填项已用*标注